\qquad
\qquad

Triangle Centers

Create: Copy/Paste/Open the file: GR6 Day 3 Activity.gsp

Construct: Construct $\triangle A B C$. Construct the Circumcenter of $\triangle A B C$ and label it Circumcenter.
Hide: Hide all lines and points in the sketch used in constructing the circumcenter except for those of $\triangle A B C$ and the circumcenter. To hide objects in Sketchpad, select everything to that is to be hidden and then choose Hide from the Display menu.

Measure: Measure all three angles of $\triangle A B C$. To measure an angle, select each side of the angle to be measured and choose Angle from the Measure menu.

Repeat: Repeat the above steps to construct the Incenter, Orthocenter, and Centroid for $\triangle A B C$. Label each point with its respective name.

Investigate:

A. Drag the vertices of $\triangle A B C$ to form three different types of triangles: Acute, Right, and Obtuse. For each type of triangle, observe which of the centers are inside the triangle, on the triangle or are outside of the triangle. Tip: use the angle measures of $\triangle A B C$ to help you verify that you have obtained each type of triangle.
B. Make a conjecture about the location of each of the centers for each type of triangle. On your handout you will record evidence of your findings. For each type of triangle, draw and label a sketch of $\triangle A B C$ and include each of the centers in your picture. Also, on your handout, identify each center and its location in relation to the triangle as: Inside, Outside, or On.
C. Drag the vertices of $\triangle A B C$ until all the centers are collinear. Make a conjecture about the type of triangle that $\triangle A B C$ is. Record the evidence of your findings on your handout by drawing and labeling a picture and explaining your conclusion. Cite any measurements that you made in Sketchpad to support your conclusion.
D. Drag the vertices of $\triangle A B C$ until all the centers are at the same spot in your sketch. Make a conjecture about the type of triangle that $\triangle A B C$ is. Record the evidence of your findings on your handout by drawing and labeling a picture and explaining your conclusion. Cite any measurements that you made in Sketchpad to support your conclusion.
\qquad
Date: \qquad
Acute Triangle - A triangle with all three angles acute.
Draw your picture here:

Center	Location
Circumcenter	Inside
Incenter	Inside
Orthocenter	Inside
Centric	Inside.

Right Triangle - A triangle with one angle right.

Center	Location
Circumcenter	On
Incenter	Inside
Orturcenter	On
Centric	Inside.

Obtuse Triangle - A triangle with one angle obtuse.

What happens when all 4 centers are Collinear? (Include drawings, measurements, and explanations of your reasoning).
the triangle turns into an Isosceles A.

What happens when all 4 centers are at the same spot? ? (Include drawings, measurements, and explanations of your reasoning).

He triangle

4 Centers are at the same spot.

